inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexakis(tetraaquasodium) decavanadate(V) dihydrate

Jessica Nilsson,^a Ebbe Nordlander,^a Ulrich Behrens^b and Dieter Rehder^b*

^aInorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden, and ^bChemistry Department, University of Hamburg, D-20146 Hamburg, Germany Correspondence e-mail: rehder@chemie.uni-hamburg.de

Received 9 March 2010; accepted 18 March 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (V–O) = 0.001 Å; R factor = 0.022; wR factor = 0.057; data-to-parameter ratio = 12.8.

The title compound, {[Na(H₂O)₄]₆[V₁₀O₂₈]·2H₂O}_n, crystallized from a H₂O/THF/CH₃CN solution (pH *ca* 6) containing equimolar amounts of NaVO₃ and *N*-(2-hydroxybenzyl)-*N*-(2picolyl)glycine. In the crystal structure, the decavanadate $[V_{10}O_{28}]^{6-}$ anion ($\overline{1}$ symmetry) is coordinated, *via* four terminal oxide ligands of V centres, to two dinuclear [{Na(H₂O)₃}₂(μ -H₂O)₂]²⁺ units. Interconnection of these aquasodium-ion-sandwiched decavanadates to chains parallel to [001] is effected by μ -[{Na(H₂O)₃}₂(μ -H₂O)₂]²⁺ units, bridging adjacent decavanadates *via* O=V. The structure is consolidated by an extensive network of O-H···O hydrogen bonds.

Related literature

Decavanadates with hydrated inorganic cations (Na⁺, K⁺), though with different molecular and supramolecular arrangements from that in the title structure, have been reported by, for example, Durif *et al.* (1980); Matias *et al.* (2000); Lee & Joo (2003); Wang *et al.* (2003); Guo & Yao (2007). More common are deca- and other polyoxido-vanadates with organic counter-ions such as glycyl-glycinium (Crans *et al.*, 1994) or cryptands and related macrocyclic O_xN_2 cations (Farahbakhsh *et al.*, 1998; Wang *et al.*, 2003). For the impact of decavanadates as building blocks for supermolecular assemblies, see: Ferreira da Silva *et al.* (2003). For the interaction of decavanadate with reverse micelles, see: Baruah *et al.* (2006).

 $\gamma = 100.274 \ (1)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 2.05 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.010$

39 restraints

 $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Z = 1

V = 1197.01 (19) Å³

 $0.50 \times 0.24 \times 0.10 \text{ mm}$

7584 measured reflections

5049 independent reflections

4621 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data

 $[Na(H_2O)_4]_6[V_{10}O_{28}]\cdot 2H_2O$ $M_r = 1563.76$ Triclinic, $P\overline{1}$ a = 9.6144 (9) Å b = 11.7260 (11) Å c = 11.8691 (11) Å $\alpha = 92.446$ (1)° $\beta = 113.582$ (1)°

Data collection

```
Bruker SMART diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T_{min} = 0.428, T_{max} = 0.822
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.057$ S = 1.065049 reflections 396 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O15−H15 <i>B</i> ···O19 ⁱ	0.84 (2)	2.04 (2)	2.862 (2)	169 (3)
$O16-H16B\cdots O18^{ii}$	0.84 (2)	1.99 (2)	2.820 (2)	171 (2)
$O17 - H17A \cdots O13^{ii}$	0.84 (2)	1.99 (2)	2.816 (2)	166 (3)
$O17 - H17B \cdot \cdot \cdot O10^{i}$	0.84 (2)	2.01 (2)	2.837 (2)	168 (3)
$O18-H18A\cdots O4^{iii}$	0.84 (3)	1.98 (3)	2.815 (2)	176 (2)
$O18-H18B\cdots O22^{iv}$	0.84 (2)	2.01 (2)	2.822 (2)	164 (2)
$O19-H19A\cdots O5^{i}$	0.84 (2)	1.97 (2)	2.804 (2)	175 (2)
$O20-H20A\cdots O14^{v}$	0.84 (2)	2.02 (2)	2.846 (2)	170 (2)
$O20-H20B\cdots O6^{vi}$	0.84 (2)	1.91 (2)	2.724 (2)	164 (2)
$O22 - H22A \cdots O27^{v}$	0.84 (2)	1.93 (2)	2.752 (2)	168 (2)
$O23 - H23B \cdot \cdot \cdot O7^{vii}$	0.84 (2)	1.86 (2)	2.694 (2)	173 (2)
$O25-H25A\cdots O23^{viii}$	0.84 (2)	1.88 (2)	2.706 (2)	170 (3)
$O25 - H25B \cdot \cdot \cdot O27^{ix}$	0.84 (2)	1.99 (2)	2.810 (3)	167 (2)
$O26-H26A\cdots O21^{viii}$	0.84 (2)	1.97 (2)	2.796 (2)	167 (3)

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 1, -z; (iii) x, y, z - 1; (iv) -x, -y, -z; (v) x - 1, y, z; (vi) -x, -y, -z + 1; (vii) -x + 1, -y, -z + 1; (viii) -x + 1, -y, -z + 1; (viii) -x + 1, -y, -z + 1; (viii)

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the German Academic Exchange Service (DAAD) and the Swedish Research School in Pharmaceutical Sciences. We thank Oliver Schuster, University of Fribourg, for the preparation of Fig. 2.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2141).

References

- Baruah, B., Roden, J. M., Sedgwick, M., Correra, N. M., Crans, D. C. & Levinger, N. E. (2006). J. Am. Chem. Soc. 128, 12758–12765.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crans, D. C., Mahroof-Tahir, M., Anderson, O. P. & Miller, M. M. (1994). Inorg. Chem. 33, 5586–5590.
- Durif, A., Averbuch-Pouchot, M. T. & Guitel, J. C. (1980). Acta Cryst. B36, 680-682.
- Farahbakhsh, M., Koegeler, P., Schmidt, H. & Rehder, D. (1998). *Inorg. Chem. Commun.* 1, 111–114.
- Ferreira da Silva, J. L., Minas da Piedade, M. F. & Duarte, M. T. (2003). Inorg. Chim. Acta, 356, 222–242.
- Guo, H.-X. & Yao, Z.-L. (2007). Acta Cryst. C63, i51-i53.
- Lee, U. & Joo, H.-C. (2003). Acta Cryst. E59, i122-i124.
- Matias, P. M., Pessoa, J. C., Duarte, M. T. & Madeira, C. (2000). Acta Cryst. C56, e75–e76.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, D., Zhang, W., Gruening, K. & Rehder, D. (2003). J. Mol. Struct. 656, 79–91.

Acta Cryst. (2010). E66, i30-i31 [doi:10.1107/S1600536810010251]

Hexakis(tetraaquasodium) decavanadate(V) dihydrate

J. Nilsson, E. Nordlander, U. Behrens and D. Rehder

Comment

Decavanadates $H_nV_{10}O_{28}^{(6-n)-}$ (n = 0-3) form in aqueous solutions containing vanadates (mainly mono- and diprotonated mono- and divanadate, cyclic tetra- and pentavanadate) at a pH < 6.3 and sufficiently high concentrations (> ca. 1 mM, depending on the ionic strength of the medium). In the pH range 4.5 to 6.3, $HV_{10}O_{28}^{5-}$ is the major species, coexistent with minor amounts of $V_{10}O_{28}^{6-}$. Stabilisation by organic counter-ions can extend the range of stability of decavanadates into the alkaline regime (Wang *et al.*, 2003). The centro-symmetric decavanadate contains three distinct types of vanadium centres: The eight peripheral vanadium ions, $Va [O=V(\mu-O)_2(\mu_3-O)_2(\mu_6-O)]$ and $Vb [O=V(\mu-O)_4(\mu_6-O)]$ carry one terminal and five bridging oxido ligands, while the two central V*c* type vanadium ions are hexa-coordinated by bridging oxygens.

The title compound shows a unique interaction between the decavanadate and dinuclear aquasodium counterions: The structure comprises a discrete non-protonated decavanadate anion $[V_{10}O_{28}]^{6-}$, sandwiched by two $[{Na(H_2O)_3}_2(\mu-H_2O)_2]^{2+}$ cations via aqua ligands, and further connected to chains by bridging $[{Na(H_2O)_3}_2(\mu-H_2O)_2]^{2+}$ cations (Figs. 1, 2 and 3). The sandwiching dinuclear aquasodium cations coordinate to the oxido ligands O1 and O2 of the four V*a* type vanadium ions (V2 and V3) of the decavanadate, while two opposed O=V*b* groups (O3=V4) participate in the chain construction; the second O=V*b* group, O14=V5, is not involved in direct bonding. The oxygen O14 is, however, hydrogen bonded to the aqua ligand H20a (O14…H20a = 2.017 Å). In addition, there are two molecules of water of hydration (O27) which are hydrogen bonded to one of the aqua ligands (H27b…O25 = 1.912 Å) and weakly hydrogen bonded to the doubly bridging O9 of decavanadate (H27a…O9 = 2.197 Å).

Experimental

NaVO₃ (0.07 g, 0.55 mmol) and *N*-(2-hydroxibenzyl)-N-(2-picolyl)-glycine (H₂L; 0.15 g, 0.55 mmol) were dissolved in 10 ml of deionised water/THF 9:1 and stirred at room temp. for three hours. The ⁵¹V NMR showed the presence of H₂VO₄⁻, H₂V₂O₇²⁻, V₄O₁₂⁴⁻, V₅O₁₅⁵⁻ and an oxidovanadium complex of L²⁻. The solvent volume was reduced to 3 ml, layered with CH₃CN, and kept at 8 °C. Yellow crystals of the title compound formed within a week.

Refinement

The positions of the H atoms were taken from the difference Fourier map and refined with H—O distances of 0.84 Å and H—O—H angles of 104.5° .

Figures

Fig. 1. An ORTEP view (50% probability level; hydrogen atoms omitted) of the decavanadate(6-) anion with its sandwiching and bridging $[{Na(H_2O)_3}_2(\mu-H_2O)_2]^{2+}$ counter-ions.

Fig. 2. Polygonal representation of a three-membered chain section. The decavanadates are shown in blue, the $[{Na(H_2O)_3}_2(\mu-H_2O)_2]^{2+}$ counter-ions in yellow.

Fig. 3. Detail view of the μ -[{Na(H₂O)₃}₂(μ -H₂O)₂]²⁺ unit connecting two decavanadates via O4 and O4a.

Hexakis(tetraaquasodium) decavanadate(V) dihydrate

Crystal	data
---------	------

$[Na(H_2O)_4]_6[V_{10}O_{28}]\cdot 2H_2O$	Z = 1
$M_r = 1563.76$	F(000) = 780
Triclinic, <i>P</i> T	$D_{\rm x} = 2.169 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.6144 (9) Å	Cell parameters from 4566 reflections
b = 11.7260 (11) Å	$\theta = 4.7 - 55.9^{\circ}$
c = 11.8691 (11) Å	$\mu = 2.05 \text{ mm}^{-1}$
$\alpha = 92.446 \ (1)^{\circ}$	T = 100 K
$\beta = 113.582 \ (1)^{\circ}$	Block, orange
$\gamma = 100.274 \ (1)^{\circ}$	$0.50\times0.24\times0.10~mm$
$V = 1197.01 (19) \text{ Å}^3$	
Data collection	
Bruker SMART	5049 independent reflections

diffractometer

Radiation source: fine-focus sealed tube	4621 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.010$
ω–scan	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -11 \rightarrow 12$
$T_{\min} = 0.428, \ T_{\max} = 0.822$	$k = -14 \rightarrow 15$
7584 measured reflections	$l = -15 \rightarrow 8$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.022$	H-atom parameters constrained
$wR(F^2) = 0.057$	$w = 1/[\sigma^2(F_o^2) + (0.0224P)^2 + 1.1216P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
5049 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
396 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$
39 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
mente de la companya	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0004 (2)

Special details

Experimental. Crystals were grown from a solution of sodiumvanadate in water-THF-methanol

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. O—H lengths were fixed to 0.84 A, H—O—H angles to 104.5 degrees.

Fractional atomic coordinates and	isotropic or e	equivalent isotropic	displacement	parameters ((A^2))
				P	. /	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
V1	0.32866 (3)	0.49894 (2)	0.49773 (3)	0.00662 (7)
V2	0.36691 (3)	0.43084 (2)	0.25206 (3)	0.00734 (7)
V3	0.52081 (3)	0.31293 (2)	0.62715 (3)	0.00707 (7)
V4	0.22632 (3)	0.24259 (2)	0.37700 (3)	0.00789 (7)
V5	0.54694 (3)	0.24381 (3)	0.38087 (3)	0.00819 (7)
Na1	0.68380 (9)	0.20347 (7)	-0.04171 (7)	0.01458 (16)
Na2	0.00968 (8)	-0.06905 (6)	0.36995 (7)	0.01258 (15)

Na3	0.20510 (8)	0.51845 (6)	-0.09634 (7)	0.01183 (15)
01	0.30955 (15)	0.47278 (11)	0.11639 (11)	0.0112 (3)
O2	0.57790 (15)	0.27004 (11)	0.76214 (12)	0.0117 (3)
03	0.06723 (14)	0.14613 (11)	0.33464 (12)	0.0116 (3)
O4	0.43595 (14)	0.44985 (10)	0.65664 (11)	0.0074 (2)
05	0.30505 (14)	0.54867 (10)	0.34087 (11)	0.0078 (2)
O6	0.32409 (14)	0.22657 (10)	0.54530 (11)	0.0089 (2)
07	0.60556 (14)	0.22842 (10)	0.54878 (11)	0.0089 (2)
08	0.47848 (14)	0.32382 (10)	0.24227 (11)	0.0091 (2)
09	0.19622 (14)	0.32182 (10)	0.23905 (11)	0.0091 (2)
O10	0.17201 (14)	0.38447 (10)	0.44432 (11)	0.0092 (2)
011	0.35146 (14)	0.16030 (10)	0.34055 (11)	0.0093 (2)
012	0.45138 (13)	0.38945 (10)	0.44775 (11)	0.0072 (2)
013	0.72840 (14)	0.38759 (11)	0.45042 (11)	0.0091 (2)
O14	0.63150 (15)	0.15212 (11)	0.34249 (12)	0.0134 (3)
015	0.08001 (15)	0.64704 (12)	-0.03043 (12)	0.0139 (3)
016	0.43615 (15)	0.66748 (12)	-0.03469 (12)	0.0136 (3)
017	0.13702 (16)	0.61325 (13)	-0.27889 (12)	0.0163 (3)
018	0.31590 (15)	0.38521 (11)	-0.16898 (12)	0.0128 (3)
019	-0.03436 (15)	0.37867 (12)	-0.19183 (12)	0.0139 (3)
O20	-0.18096 (15)	-0.01604 (11)	0.42273 (12)	0.0117 (3)
O21	0.76870 (16)	0.15411 (13)	0.15731 (13)	0.0178 (3)
022	-0.20085 (16)	-0.14460 (12)	0.17792 (13)	0.0178 (3)
023	0.23048 (15)	-0.07292 (11)	0.33278 (12)	0.0128 (3)
O24	0.01105 (16)	-0.26635 (12)	0.41579 (13)	0.0163 (3)
025	0.83366 (19)	0.08376 (13)	-0.08832 (14)	0.0236 (3)
O26	0.47074 (19)	0.03597 (14)	-0.12596 (16)	0.0294 (4)
027	0.8411 (2)	-0.14147 (13)	-0.03821 (14)	0.0281 (4)
H15A	0.0004 (18)	0.657 (2)	-0.0896 (15)	0.0406 (17)*
H15B	0.055 (3)	0.642 (2)	0.0294 (14)	0.0406 (17)*
H16A	0.459 (3)	0.670 (2)	-0.0956 (14)	0.0406 (17)*
H16B	0.509 (2)	0.646 (2)	0.0210 (16)	0.0406 (17)*
H17A	0.178 (2)	0.601 (3)	-0.3279(17)	0.0406 (17)*
H17B	0.0421 (8)	0.605 (3)	-0.3240 (18)	0.0406 (17)*
H18A	0.349 (3)	0.402 (2)	-0.2226(19)	0.0406 (17)*
H18B	0.273 (3)	0.3144 (7)	-0.187 (2)	0.0406 (17)*
H19A	-0.112(2)	0.404 (2)	-0.2358 (18)	0.0406 (17)*
H19B	-0.020(3)	0.334 (2)	-0.2412(17)	0.0406 (17)*
H20A	-0.238(2)	0.0307 (16)	0.391 (2)	0.0406 (17)*
H20B	-0.241(2)	-0.0771 (13)	0.423 (3)	0.0406 (17)*
H21A	0.8521 (17)	0.131 (2)	0.191 (2)	0.0406 (17)*
H21B	0.785 (3)	0.2171 (14)	0.201 (2)	0.0406 (17)*
H22A	-0.202(3)	-0.148(2)	0.1070 (11)	0.0406 (17)*
H22B	-0.279(2)	-0.118(2)	0.170 (2)	0.0406 (17)*
H23A	0.287 (2)	-0.0058 (9)	0.351 (2)	0.0406 (17)*
H23B	0.287 (2)	-0.1167 (16)	0.373 (2)	0.0406 (17)*
H24A	0.0900(17)	-0.291 (2)	0.460 (2)	0.0406 (17)*
H24B	-0.0612 (19)	-0.304(2)	0.431 (2)	0.0406 (17)*
H25A	0.824 (3)	0.085 (2)	-0.1616 (8)	0.0406 (17)*
	(-)		- (-)	

H25B	0.9284 (10)	0.109 (2)	-0.0442 (18)	0.0406 (17)*
H26A	0.410 (3)	-0.0259 (12)	-0.128 (3)	0.0406 (17)*
H26B	0.519 (3)	0.015 (2)	-0.166 (2)	0.0406 (17)*
H27A	0.804 (3)	-0.1880 (16)	-0.1037 (13)	0.0406 (17)*
H27B	0.827 (3)	-0.0763 (10)	-0.061 (2)	0.0406 (17)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.00643 (14)	0.00731 (14)	0.00662 (14)	0.00154 (11)	0.00308 (11)	0.00185 (11)
V2	0.00903 (14)	0.00742 (14)	0.00493 (14)	0.00141 (11)	0.00236 (11)	0.00133 (10)
V3	0.00797 (14)	0.00698 (14)	0.00611 (14)	0.00169 (11)	0.00257 (11)	0.00235 (10)
V4	0.00671 (14)	0.00731 (14)	0.00883 (15)	0.00045 (11)	0.00281 (11)	0.00129 (11)
V5	0.00842 (14)	0.00770 (14)	0.00935 (15)	0.00218 (11)	0.00441 (12)	0.00113 (11)
Na1	0.0139 (4)	0.0171 (4)	0.0115 (4)	0.0026 (3)	0.0042 (3)	0.0041 (3)
Na2	0.0119 (4)	0.0134 (3)	0.0121 (4)	0.0025 (3)	0.0049 (3)	0.0001 (3)
Na3	0.0108 (3)	0.0148 (3)	0.0101 (4)	0.0029 (3)	0.0044 (3)	0.0030 (3)
01	0.0128 (6)	0.0117 (6)	0.0076 (6)	0.0016 (5)	0.0031 (5)	0.0019 (5)
O2	0.0140 (6)	0.0114 (6)	0.0107 (6)	0.0031 (5)	0.0055 (5)	0.0040 (5)
O3	0.0094 (6)	0.0107 (6)	0.0129 (6)	0.0007 (5)	0.0032 (5)	0.0025 (5)
O4	0.0078 (6)	0.0085 (6)	0.0068 (6)	0.0017 (5)	0.0041 (5)	0.0017 (4)
05	0.0076 (6)	0.0093 (6)	0.0063 (6)	0.0020 (5)	0.0026 (5)	0.0022 (4)
O6	0.0081 (6)	0.0089 (6)	0.0095 (6)	0.0004 (5)	0.0037 (5)	0.0028 (5)
O7	0.0101 (6)	0.0080 (6)	0.0096 (6)	0.0026 (5)	0.0046 (5)	0.0023 (5)
08	0.0107 (6)	0.0101 (6)	0.0078 (6)	0.0022 (5)	0.0051 (5)	0.0013 (5)
09	0.0088 (6)	0.0087 (6)	0.0083 (6)	0.0010 (5)	0.0026 (5)	0.0013 (5)
O10	0.0072 (6)	0.0107 (6)	0.0095 (6)	0.0014 (5)	0.0034 (5)	0.0019 (5)
011	0.0105 (6)	0.0080 (6)	0.0093 (6)	0.0015 (5)	0.0040 (5)	0.0013 (5)
012	0.0078 (6)	0.0081 (5)	0.0066 (6)	0.0017 (5)	0.0038 (5)	0.0023 (4)
O13	0.0084 (6)	0.0117 (6)	0.0085 (6)	0.0030 (5)	0.0043 (5)	0.0027 (5)
O14	0.0154 (7)	0.0131 (6)	0.0150 (7)	0.0057 (5)	0.0085 (5)	0.0029 (5)
015	0.0127 (6)	0.0182 (7)	0.0114 (7)	0.0040 (5)	0.0053 (5)	0.0026 (5)
O16	0.0102 (6)	0.0210 (7)	0.0104 (6)	0.0048 (5)	0.0045 (5)	0.0038 (5)
O17	0.0118 (6)	0.0279 (8)	0.0114 (7)	0.0073 (6)	0.0057 (5)	0.0055 (6)
O18	0.0137 (7)	0.0141 (6)	0.0124 (7)	0.0023 (5)	0.0073 (5)	0.0025 (5)
O19	0.0105 (6)	0.0175 (7)	0.0132 (7)	0.0040 (5)	0.0040 (5)	0.0021 (5)
O20	0.0114 (6)	0.0105 (6)	0.0141 (7)	0.0019 (5)	0.0060 (5)	0.0039 (5)
O21	0.0152 (7)	0.0238 (7)	0.0142 (7)	0.0064 (6)	0.0049 (6)	0.0050 (6)
O22	0.0181 (7)	0.0187 (7)	0.0145 (7)	0.0034 (6)	0.0046 (6)	0.0019 (6)
O23	0.0132 (6)	0.0101 (6)	0.0160 (7)	0.0040 (5)	0.0060 (5)	0.0039 (5)
O24	0.0136 (7)	0.0182 (7)	0.0166 (7)	0.0032 (5)	0.0056 (6)	0.0052 (5)
O25	0.0362 (9)	0.0216 (7)	0.0160 (7)	0.0114 (7)	0.0117 (7)	0.0039 (6)
O26	0.0223 (8)	0.0300 (9)	0.0292 (9)	-0.0075 (7)	0.0096 (7)	-0.0008 (7)
O27	0.0489 (10)	0.0138 (7)	0.0126 (7)	-0.0018 (7)	0.0074 (7)	-0.0008 (6)

Geometric parameters (Å, °)

```
V1—013<sup>i</sup> 1.7061 (12) V5—07 1.8682 (13)
```

V1—O10	1.7071 (12)	V5—O8	1.8722 (13)
V1—05	1.9130 (12)	V5—O13	2.0609 (13)
V1—O4	1.9237 (12)	V5—O12	2.3278 (12)
V1—012	2.1042 (12)	V5—V1 ⁱ	3.0935 (5)
V1—O12 ⁱ	2.1094 (12)	Na1—O21	2.3073 (16)
V1—V4	3.0832 (5)	Na1—O2 ⁱⁱ	2.3682 (14)
V1—V5 ⁱ	3.0935 (5)	Na1—O25	2.3760 (17)
V2—O1	1.6102 (13)	Na1—O16 ⁱⁱⁱ	2.4051 (15)
V2—08	1.8184 (12)	Na1—O26	2.4108 (17)
V2—O9	1.8393 (12)	Na1—O15 ⁱⁱⁱ	2.4205 (16)
V2—O4 ⁱ	2.0014 (12)	Na1—Na3 ⁱⁱⁱ	3.3703 (11)
V2—O5	2.0110 (12)	Na2—O20	2.3303 (15)
V2—O12	2.2400 (12)	Na2—O23	2.3419 (15)
V2—V3 ⁱ	3.0798 (5)	Na2—O22	2.3608 (16)
V2—V5	3.1090 (4)	Na2—O20 ^{iv}	2.3926 (15)
V2—V4	3.1173 (4)	Na2—O24	2.4003 (15)
V3—O2	1.6078 (13)	Na2—O3	2.5741 (15)
V3—06	1.8191 (12)	Na2—Na2 ^{iv}	3.5112 (15)
V3—07	1.8240 (12)	Na3—O18	2.3522 (15)
V3—O4	2.0034 (12)	Na3—O15	2.3730 (15)
V3—O5 ⁱ	2.0126 (12)	Na3—O19	2.3831 (15)
V3—O12	2.2414 (12)	Na3—O17	2.3852 (15)
V3—V2 ⁱ	3.0798 (5)	Na3—O16	2.3937 (16)
V3—V5	3.1181 (5)	Na3—O1	2.4391 (14)
V4—O3	1.6095 (13)	Na3—Na1 ⁱⁱⁱ	3.3704 (11)
V4—O11	1.8333 (12)	O2—Na1 ^v	2.3682 (14)
V4—O9	1.8640 (13)	O4—V2 ⁱ	2.0014 (12)
V4—O6	1.8713 (13)	O5—V3 ⁱ	2.0126 (12)
V4—O10	2.0516 (13)	O12—V1 ⁱ	2.1094 (12)
V4—O12	2.3337 (12)	O13—V1 ⁱ	1.7061 (12)
V4—V5	3.0620 (5)	O15—Na1 ⁱⁱⁱ	2.4205 (16)
V5—O14	1.6095 (13)	O16—Na1 ⁱⁱⁱ	2.4051 (15)
V5—011	1.8177 (13)	O20—Na2 ^{iv}	2.3926 (15)
O13 ⁱ —V1—O10	106.37 (6)	011—V5—V1 ⁱ	125.15 (4)
013 ⁱ —V1—O5	96.99 (6)	07—V5—V1 ⁱ	77.89 (4)
O10—V1—O5	97.54 (6)	08—V5—V1 ⁱ	78.58 (4)
013 ⁱ —V1—O4	97.07 (6)	O13—V5—V1 ⁱ	31.20 (3)
O10—V1—O4	96.89 (6)	O12—V5—V1 ⁱ	42.97 (3)
O5—V1—O4	156.12 (5)	V4—V5—V1 ⁱ	91.989 (11)
O13 ⁱ —V1—O12	165.75 (6)	O14—V5—V2	135.42 (5)
O10—V1—O12	87.88 (5)	O11—V5—V2	82.17 (4)
O5—V1—O12	80.69 (5)	O7—V5—V2	123.05 (4)
O4—V1—O12	80.93 (5)	O8—V5—V2	32.07 (4)

013 ⁱ —V1—012 ⁱ	87.52 (5)	O13—V5—V2	81.70 (3)
O10—V1—O12 ⁱ	166.10 (5)	O12—V5—V2	45.93 (3)
O5—V1—O12 ⁱ	80.97 (5)	V4—V5—V2	60.678 (10)
04—V1—012 ⁱ	80.46 (5)	V1 ⁱ —V5—V2	61.445 (11)
O12—V1—O12 ⁱ	78.23 (5)	O14—V5—V3	132.95 (5)
013 ⁱ —V1—V4	145.10 (4)	O11—V5—V3	81.93 (4)
O10—V1—V4	38.74 (4)	O7—V5—V3	31.95 (4)
O5—V1—V4	89.49 (4)	O8—V5—V3	123.26 (4)
O4—V1—V4	89.95 (4)	O13—V5—V3	81.33 (4)
O12—V1—V4	49.15 (3)	O12—V5—V3	45.82 (3)
O12 ⁱ —V1—V4	127.38 (3)	V4—V5—V3	60.666 (9)
013 ⁱ —V1—V5 ⁱ	38.74 (4)	V1 ⁱ —V5—V3	61.256 (9)
O10—V1—V5 ⁱ	145.11 (4)	V2—V5—V3	91.526 (12)
O5—V1—V5 ⁱ	89.73 (4)	O21—Na1—O2 ⁱⁱ	172.30 (6)
O4—V1—V5 ⁱ	89.25 (4)	O21—Na1—O25	90.19 (6)
O12—V1—V5 ⁱ	127.01 (3)	O2 ⁱⁱ —Na1—O25	97.51 (6)
012 ⁱ —V1—V5 ⁱ	48.78 (3)	O21—Na1—O16 ⁱⁱⁱ	83.28 (5)
V4—V1—V5 ⁱ	176.157 (13)	O2 ⁱⁱ —Na1—O16 ⁱⁱⁱ	89.04 (5)
O1—V2—O8	102.98 (6)	O25—Na1—O16 ⁱⁱⁱ	171.59 (6)
O1—V2—O9	102.33 (6)	O21—Na1—O26	93.99 (6)
O8—V2—O9	94.90 (6)	O2 ⁱⁱ —Na1—O26	86.67 (6)
01—V2—04 ⁱ	100.68 (6)	O25—Na1—O26	86.32 (6)
08—V2—04 ⁱ	90.06 (5)	O16 ⁱⁱⁱ —Na1—O26	99.38 (6)
09—V2—04 ⁱ	154.69 (5)	O21—Na1—O15 ⁱⁱⁱ	87.34 (5)
O1—V2—O5	100.31 (6)	O2 ⁱⁱ —Na1—O15 ⁱⁱⁱ	93.26 (5)
O8—V2—O5	154.79 (5)	O25—Na1—O15 ⁱⁱⁱ	84.44 (6)
O9—V2—O5	89.42 (5)	O16 ⁱⁱⁱ —Na1—O15 ⁱⁱⁱ	89.94 (5)
O4 ⁱ —V2—O5	76.19 (5)	O26—Na1—O15 ⁱⁱⁱ	170.67 (6)
O1—V2—O12	174.83 (6)	O21—Na1—Na3 ⁱⁱⁱ	85.15 (4)
O8—V2—O12	80.85 (5)	O2 ⁱⁱ —Na1—Na3 ⁱⁱⁱ	89.87 (4)
O9—V2—O12	80.63 (5)	O25—Na1—Na3 ⁱⁱⁱ	129.08 (5)
O4 ⁱ —V2—O12	75.68 (5)	O16 ⁱⁱⁱ —Na1—Na3 ⁱⁱⁱ	45.25 (4)
O5—V2—O12	75.36 (5)	O26—Na1—Na3 ⁱⁱⁱ	144.54 (5)
O1—V2—V3 ⁱ	90.43 (5)	O15 ⁱⁱⁱ —Na1—Na3 ⁱⁱⁱ	44.75 (4)
08—V2—V3 ⁱ	129.81 (4)	O20—Na2—O23	165.69 (6)
O9—V2—V3 ⁱ	129.49 (4)	O20—Na2—O22	83.88 (5)
O4 ⁱ —V2—V3 ⁱ	39.76 (3)	O23—Na2—O22	104.40 (6)
O5—V2—V3 ⁱ	40.07 (4)	O20—Na2—O20 ^{iv}	83.96 (5)
012—V2—V3 ⁱ	84.43 (3)	O23—Na2—O20 ^{iv}	87.70 (5)
O1—V2—V5	135.86 (5)	O22—Na2—O20 ^{iv}	167.80 (6)
O8—V2—V5	33.14 (4)	O20—Na2—O24	104.87 (5)
O9—V2—V5	83.38 (4)	O23—Na2—O24	87.28 (5)

O4 ⁱ —V2—V5	87.43 (4)	O22—Na2—O24	88.00 (5)
O5—V2—V5	123.65 (4)	O20 ^{iv} —Na2—O24	94.22 (5)
O12—V2—V5	48.30 (3)	O20—Na2—O3	84.71 (5)
V3 ⁱ —V2—V5	119.735 (13)	O23—Na2—O3	82.43 (5)
O1—V2—V4	135.06 (5)	O22—Na2—O3	99.54 (5)
08—V2—V4	83.55 (4)	O20 ^{iv} —Na2—O3	80.26 (5)
O9—V2—V4	32.92 (4)	O24—Na2—O3	168.48 (5)
O4 ⁱ —V2—V4	123.96 (4)	O20—Na2—Na2 ^{iv}	42.66 (4)
O5—V2—V4	86.79 (4)	O23—Na2—Na2 ^{iv}	128.01 (5)
O12—V2—V4	48.31 (3)	O22—Na2—Na2 ^{iv}	126.53 (5)
V3 ⁱ —V2—V4	119.559 (13)	O20 ^{iv} —Na2—Na2 ^{iv}	41.30 (3)
V5—V2—V4	58.915 (11)	O24—Na2—Na2 ^{iv}	102.74 (5)
O2—V3—O6	103.48 (6)	O3—Na2—Na2 ^{iv}	79.83 (4)
O2—V3—O7	102.71 (6)	O18—Na3—O15	176.93 (6)
O6—V3—O7	95.00 (6)	O18—Na3—O19	86.84 (5)
O2—V3—O4	100.39 (6)	O15—Na3—O19	90.19 (5)
O6—V3—O4	89.99 (5)	O18—Na3—O17	93.73 (5)
O7—V3—O4	154.50 (5)	O15—Na3—O17	85.47 (5)
O2—V3—O5 ⁱ	99.91 (6)	O19—Na3—O17	89.84 (5)
O6—V3—O5 ⁱ	154.60 (5)	O18—Na3—O16	91.43 (5)
O7—V3—O5 ⁱ	89.34 (5)	O15—Na3—O16	91.37 (5)
O4—V3—O5 ⁱ	76.10 (5)	O19—Na3—O16	170.38 (6)
O2—V3—O12	174.75 (6)	O17—Na3—O16	80.82 (5)
O6—V3—O12	80.41 (5)	O18—Na3—O1	94.70 (5)
O7—V3—O12	80.28 (5)	O15—Na3—O1	86.72 (5)
O4—V3—O12	75.92 (5)	O19—Na3—O1	102.83 (5)
O5 ⁱ —V3—O12	75.68 (5)	O17—Na3—O1	165.13 (6)
O2—V3—V2 ⁱ	90.00 (5)	O16—Na3—O1	86.74 (5)
06—V3—V2 ⁱ	129.69 (4)	O18—Na3—Na1 ⁱⁱⁱ	136.94 (4)
07—V3—V2 ⁱ	129.37 (4)	O15—Na3—Na1 ⁱⁱⁱ	45.90 (4)
O4—V3—V2 ⁱ	39.71 (4)	O19—Na3—Na1 ⁱⁱⁱ	135.65 (4)
O5 ⁱ —V3—V2 ⁱ	40.03 (3)	O17—Na3—Na1 ⁱⁱⁱ	81.97 (4)
O12—V3—V2 ⁱ	84.78 (3)	O16—Na3—Na1 ⁱⁱⁱ	45.52 (4)
O2—V3—V5	135.29 (5)	O1—Na3—Na1 ⁱⁱⁱ	83.50 (4)
O6—V3—V5	83.08 (4)	V2—O1—Na3	174.54 (8)
O7—V3—V5	32.82 (4)	V3—O2—Na1 ^v	174.33 (8)
O4—V3—V5	124.04 (4)	V4—O3—Na2	132.53 (7)
O5 ⁱ —V3—V5	87.26 (4)	V1-04-V2 ⁱ	107.65 (6)
012—V3—V5	48.14 (3)	V1—04—V3	107.11 (6)
V2 ⁱ _V3_V5	119.925 (12)	$V2^{i}$ 04 V3	100.53 (5)
03-V4-011	102.05 (6)	V1-05-V2	107 67 (6)
03	103.67 (6)	$V_{1} = 05 = V_{2}^{i}$	107.41 (6)
	105.07(0)	v1-05-v5	00.80 (5)
011	91.04 (0)	v2	77.87 (J)

O3—V4—O6	101.25 (6)	V3—O6—V4	115.52 (6)
O11—V4—O6	91.17 (6)	V3—O7—V5	115.23 (6)
O9—V4—O6	153.74 (5)	V2—O8—V5	114.79 (6)
O3—V4—O10	101.85 (6)	V2—O9—V4	114.65 (6)
O11—V4—O10	156.05 (5)	V1—O10—V4	109.89 (6)
O9—V4—O10	84.06 (5)	V5—O11—V4	114.00 (6)
O6—V4—O10	82.86 (5)	V1—012—V1 ⁱ	101.77 (5)
O3—V4—O12	175.93 (6)	V1—O12—V2	93.61 (5)
O11—V4—O12	81.69 (5)	V1 ⁱ —O12—V2	93.48 (5)
O9—V4—O12	77.65 (5)	V1—O12—V3	93.23 (5)
O6—V4—O12	76.94 (5)	V1 ⁱ —O12—V3	93.28 (5)
O10—V4—O12	74.37 (5)	V2—O12—V3	169.21 (6)
O3—V4—V5	134.88 (5)	V1—O12—V5	169.98 (6)
O11—V4—V5	32.84 (4)	V1 ⁱ —O12—V5	88.26 (4)
O9—V4—V5	84.37 (4)	V2—O12—V5	85.77 (4)
O6—V4—V5	83.93 (4)	V3—O12—V5	86.05 (4)
O10—V4—V5	123.22 (4)	V1—O12—V4	87.85 (4)
O12—V4—V5	48.85 (3)	V1 ⁱ —O12—V4	170.38 (6)
O3—V4—V1	133.22 (5)	V2—O12—V4	85.91 (4)
O11—V4—V1	124.69 (4)	V3—O12—V4	86.02 (4)
O9—V4—V1	78.79 (4)	V5—O12—V4	82.12 (4)
O6—V4—V1	78.18 (4)	V1 ⁱ —O13—V5	110.05 (6)
O10—V4—V1	31.37 (3)	Na3—O15—Na1 ⁱⁱⁱ	89.35 (5)
O12—V4—V1	43.00 (3)	Na3—O15—H15A	111.5 (18)
V5—V4—V1	91.854 (11)	Na1 ⁱⁱⁱ —O15—H15A	119.1 (19)
O3—V4—V2	135.91 (5)	Na3—O15—H15B	126.4 (18)
O11—V4—V2	81.71 (4)	Na1 ⁱⁱⁱ —O15—H15B	105.9 (19)
O9—V4—V2	32.43 (4)	Na3—O16—Na1 ⁱⁱⁱ	89.23 (5)
O6—V4—V2	122.73 (4)	Na3—O16—H16A	106.5 (19)
O10—V4—V2	82.14 (4)	Na1 ⁱⁱⁱ —O16—H16A	129.7 (17)
O12—V4—V2	45.79 (3)	Na3—O16—H16B	108.6 (19)
V5—V4—V2	60.407 (10)	Na1 ⁱⁱⁱ —O16—H16B	114.1 (17)
V1—V4—V2	61.458 (11)	Na3—O17—H17A	118.5 (18)
O14—V5—O11	103.91 (6)	Na3—O17—H17B	116.8 (18)
O14—V5—O7	101.10 (6)	Na3—O18—H18A	120.3 (18)
011—V5—07	91.89 (6)	Na3—O18—H18B	120.2 (18)
O14—V5—O8	103.41 (6)	Na3—O19—H19A	116.6 (19)
O11—V5—O8	91.81 (6)	Na3—O19—H19B	103.9 (19)
O7—V5—O8	153.53 (5)	Na2—O20—Na2 ^{iv}	96.04 (5)
O14—V5—O13	99.72 (6)	Na2—O20—H20A	128.0 (19)
O11—V5—O13	156.35 (5)	Na2 ^{iv} —O20—H20A	107.5 (19)
O7—V5—O13	82.59 (5)	Na2—O20—H20B	108.1 (18)
O8—V5—O13	83.57 (5)	Na2 ^{iv} —O20—H20B	110.5 (19)
O14—V5—O12	173.77 (6)	Na1—O21—H21A	122 (2)
O11—V5—O12	82.18 (5)	Na1—O21—H21B	103.8 (19)
O7—V5—O12	77.12 (5)	Na2—O22—H22A	128.5 (18)

77.44 (5)	N_{2} $\Omega \Omega \Omega$ $H \Omega \Omega$	111.2(10)			
	Na2—022—1122D	111.2 (18)			
74.17 (5)	Na2—O23—H23A	109.7 (19)			
137.06 (5)	Na2—O23—H23B	115.3 (19)			
33.16 (4)	Na2—O24—H24A	125.2 (18)			
84.53 (4)	Na2—O24—H24B	119.5 (17)			
84.34 (4)	Na1—O25—H25A	111.3 (19)			
123.19 (4)	Na1—O25—H25B	110.5 (19)			
49.02 (3)	Na1—O26—H26A	159 (2)			
130.92 (5)	Na1—O26—H26B	85.0 (17)			
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $x, y, z-1$; (iii) $-x+1$, $-y+1$, $-z$; (iv) $-x, -y, -z+1$; (v) $x, y, z+1$.					
Hydrogen-bond geometry (Å, °)					
	74.17 (5) 74.17 (5) 137.06 (5) 33.16 (4) 84.53 (4) 84.34 (4) 123.19 (4) 49.02 (3) 130.92 (5) ii) <i>x</i> , <i>y</i> , <i>z</i> -1; (iii) - <i>x</i> +1, - <i>y</i> -	74.17 (5) Na2-O23-H23A 137.06 (5) Na2-O23-H23B 33.16 (4) Na2-O24-H24A 84.53 (4) Na2-O24-H24B 84.34 (4) Na1-O25-H25A 123.19 (4) Na1-O25-H25B 49.02 (3) Na1-O26-H26B ii) $x, y, z-1;$ (iii) $-x+1, -y+1, -z;$ (iv) $-x, -y, -z+1;$ (v) $x, y, z+1.$			

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O15—H15A····O9 ^{vi}	0.84 (2)	2.07 (2)	2.912 (2)	178 (2)
O15—H15B…O19 ^{vi}	0.84 (2)	2.04 (2)	2.862 (2)	169 (3)
O16—H16A····O8 ⁱⁱⁱ	0.84 (2)	2.06 (2)	2.892 (2)	178 (3)
O16—H16B…O18 ⁱⁱⁱ	0.84 (2)	1.99 (2)	2.820 (2)	171 (2)
O17—H17A…O13 ⁱⁱⁱ	0.84 (2)	1.99 (2)	2.816 (2)	166 (3)
O17—H17B…O10 ^{vi}	0.84 (2)	2.01 (2)	2.837 (2)	168 (3)
O18—H18A····O4 ⁱⁱ	0.84 (3)	1.98 (3)	2.815 (2)	176 (2)
O18—H18B···O22 ^{vii}	0.84 (2)	2.01 (2)	2.822 (2)	164 (2)
O19—H19A…O5 ^{vi}	0.84 (2)	1.97 (2)	2.804 (2)	175 (2)
O19—H19B···O24 ^{vii}	0.84 (2)	2.23 (2)	3.022 (2)	158 (2)
O20—H20A····O14 ^{viii}	0.84 (2)	2.02 (2)	2.846 (2)	170 (2)
O20—H20B···O6 ^{iv}	0.84 (2)	1.91 (2)	2.724 (2)	164 (2)
O21—H21A···O3 ^{ix}	0.84 (2)	2.06 (2)	2.821 (2)	150 (2)
O21—H21B···O17 ⁱⁱⁱ	0.84 (2)	2.03 (2)	2.843 (2)	162 (2)
O22—H22A···O27 ^{viii}	0.84 (2)	1.93 (2)	2.752 (2)	168 (2)
O22—H22B···O26 ^{vii}	0.84 (2)	2.12 (2)	2.950 (3)	170 (2)
O23—H23A…O11	0.84 (2)	1.96 (2)	2.756 (2)	158 (2)
O23—H23B···O7 ^x	0.84 (2)	1.86 (2)	2.694 (2)	173 (2)
O24—H24A…O13 ^x	0.84 (2)	2.19 (2)	3.016 (2)	168 (2)
O24—H24B···O10 ^{iv}	0.84 (2)	2.29 (2)	3.072 (2)	155 (2)
O25—H25A···O23 ^{xi}	0.84 (2)	1.88 (2)	2.706 (2)	170 (3)
O25—H25B···O27 ^{xii}	0.84 (2)	1.99 (2)	2.810 (3)	167 (2)
O26—H26A···O21 ^{xi}	0.84 (2)	1.97 (2)	2.796 (2)	167 (3)
O26—H26B···O14 ^{xi}	0.84 (3)	2.56 (2)	3.026 (2)	116 (2)
O27—H27A···O9 ^{xi}	0.84 (2)	2.20 (2)	2.983 (2)	156 (3)
O27—H27B···O25	0.84 (2)	1.91 (2)	2.739 (2)	169 (2)

Symmetry codes: (vi) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (ii) x, y, z-1; (vii) -x, -y, -z; (viii) x-1, y, z; (iv) -x, -y, -z+1; (ix) x+1, y, z; (x) -x+1, -y, -z+1; (xi) -x+1, -y, -z; (xii) -x+2, -y, -z.

Fig. 1

Fig. 2

Fig. 3